enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    1/2 + 1/4 + 1/8 + 1/16 + ⋯. First six summands drawn as portions of a square. The geometric series on the real line. In mathematics, the infinite series ⁠ 1 2 ⁠ + ⁠ 1 4 ⁠ + ⁠ 1 8 ⁠ + ⁠ 1 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation ...

  3. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The partial sums of the series 1 + 2 + 3 + 4 + 5 + 6 + ⋯ are 1, 3, 6, 10, 15, etc.The nth partial sum is given by a simple formula: = = (+). This equation was known ...

  4. 1/2 − 1/4 + 1/8 − 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%E2%88%92_1/4_%2B_1/8...

    1/2 − 1/4 + 1/81/16 + ⋯. In mathematics, the infinite series 1/2 − 1/4 + 1/81/16 + ⋯ is a simple example of an alternating series that converges absolutely. It is a geometric series whose first term is ⁠ 1 2 ⁠ and whose common ratio is − ⁠ 1 2 ⁠, so its sum is.

  5. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) : n ∈ , are irrational. [1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ ...

  6. Grandi's series - Wikipedia

    en.wikipedia.org/wiki/Grandi's_series

    Grandi's series. In mathematics, the infinite series 11 + 11 + ⋯, also written. is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703. It is a divergent series, meaning that the sequence of partial sums of the series does not converge.

  7. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    6 1 2 1 11 4 5 9. and would be written in modern notation as 6 ⁠ 1 / 4 ⁠, 11 / 5 ⁠, and 2 − ⁠ 1 / 9 ⁠ (i.e., 18 / 9 ⁠). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.

  8. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  9. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky. Γ(⁠ 1 / 4 ⁠) / 4 √ π has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that Γ(⁠ 1 / 4 ⁠), π, and e π are algebraically independent.