enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of neuro-linguistic programming - Wikipedia

    en.wikipedia.org/wiki/Methods_of_neuro...

    The methods of neuro-linguistic programming are the specific techniques used to perform and teach neuro-linguistic programming, [1] [2] which teaches that people are only able to directly perceive a small part of the world using their conscious awareness, and that this view of the world is filtered by experience, beliefs, values, assumptions, and biological sensory systems.

  3. Natural-language programming - Wikipedia

    en.wikipedia.org/wiki/Natural-language_programming

    Natural-language programming (NLP) is an ontology-assisted way of programming in terms of natural-language sentences, e.g. English. [1] A structured document with Content, sections and subsections for explanations of sentences forms a NLP document, which is actually a computer program. Natural language programming is not to be mixed up with ...

  4. Natural Language Toolkit - Wikipedia

    en.wikipedia.org/wiki/Natural_Language_Toolkit

    The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. [4]

  5. Natural language processing - Wikipedia

    en.wikipedia.org/wiki/Natural_language_processing

    Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence. It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval , knowledge representation and computational linguistics , a subfield of ...

  6. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    In-context learning, refers to a model's ability to temporarily learn from prompts.For example, a prompt may include a few examples for a model to learn from, such as asking the model to complete "maison → house, chat → cat, chien →" (the expected response being dog), [23] an approach called few-shot learning.

  7. Natural language understanding - Wikipedia

    en.wikipedia.org/wiki/Natural_language_understanding

    Natural language understanding (NLU) or natural language interpretation (NLI) [1] is a subset of natural language processing in artificial intelligence that deals with machine reading comprehension.

  8. Multimodal sentiment analysis - Wikipedia

    en.wikipedia.org/wiki/Multimodal_sentiment_analysis

    Multimodal sentiment analysis also plays an important role in the advancement of virtual assistants through the application of natural language processing (NLP) and machine learning techniques. [5] In the healthcare domain, multimodal sentiment analysis can be utilized to detect certain medical conditions such as stress, anxiety, or depression. [8]

  9. Apache OpenNLP - Wikipedia

    en.wikipedia.org/wiki/Apache_OpenNLP

    The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.