Search results
Results from the WOW.Com Content Network
A typical fluid catalytic cracking unit in a petroleum refinery. Fluid catalytic cracking (FCC) is the conversion process used in petroleum refineries to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum (crude oils) into gasoline, alkene gases, and other petroleum products.
The image below is a schematic flow diagram of a typical petroleum refinery that depicts the various refining processes and the flow of intermediate product streams that occurs between the inlet crude oil feedstock and the final end-products. The diagram depicts only one of the literally hundreds of different oil refinery configurations.
A delayed coking unit. A schematic flow diagram of such a unit, where residual oil enters the process at the lower left (see →), proceeds via pumps to the main fractionator (tall column at right), the residue of which, shown in green, is pumped via a furnace into the coke drums (two columns left and center) where the final carbonization takes ...
The image below is a schematic flow diagram of a typical oil refinery that depicts the various unit processes and the flow of intermediate product streams that occurs between the inlet crude oil feedstock and the final end products. The diagram depicts only one of the literally hundreds of different oil refinery configurations.
Hydroprocessing is a catalytic term relating to the processes of hydrocracking and hydrotreating. [1] These process are for the removal of sulfur, oxygen, nitrogen and metals from crude oil, this is done in the refining of fuel to enable lower sulfur levels in fuels. [2] [3] [4] [5]
Hydrocracking is a catalytic cracking process assisted by the presence of added hydrogen gas. Unlike a hydrotreater, hydrocracking uses hydrogen to break C–C bonds (hydrotreatment is conducted prior to hydrocracking to protect the catalysts in a hydrocracking process). In 2010, 265 million tons of petroleum was processed with this technology.
For premium support please call: 800-290-4726 more ways to reach us
The process flow diagram below depicts a typical semi-regenerative catalytic reforming unit. Schematic diagram of a typical semi-regenerative catalytic reformer unit in a petroleum refinery. The liquid feed (at the bottom left in the diagram) is pumped up to the reaction pressure (5–45 atm) and is joined by a stream of hydrogen-rich recycle gas.