Search results
Results from the WOW.Com Content Network
Bézout's theorem is a statement in algebraic geometry concerning the number of common zeros of n polynomials in n indeterminates. In its original form the theorem states that in general the number of common zeros equals the product of the degrees of the polynomials. [1] It is named after Étienne Bézout.
In algebra and algebraic geometry, the multi-homogeneous Bézout theorem is a generalization to multi-homogeneous polynomials of Bézout's theorem, which counts the number of isolated common zeros of a set of homogeneous polynomials. This generalization is due to Igor Shafarevich. [1]
Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity. A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that results from Bézout's identity is thus true in ...
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. [1] The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a ...
A generalization of Bézout's theorem asserts that, if an intersection of n projective hypersurfaces has codimension n, then the degree of the intersection is the product of the degrees of the hypersurfaces. The degree of a projective variety is the evaluation at 1 of the numerator of the Hilbert series of its coordinate ring.
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .
Here we are using Hilbert series of filtered algebras, and the fact that the Hilbert series of a graded algebra is also its Hilbert series as filtered algebra. Thus R 0 {\displaystyle R_{0}} is an Artinian ring , which is a k -vector space of dimension P (1) , and Jordan–Hölder theorem may be used for proving that P (1) is the degree of the ...
In commutative algebra and algebraic geometry, elimination theory is the classical name for algorithmic approaches to eliminating some variables between polynomials of several variables, in order to solve systems of polynomial equations.