enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultraparallel theorem - Wikipedia

    en.wikipedia.org/wiki/Ultraparallel_theorem

    Lines perpendicular to line l are modeled by chords whose extension passes through the pole of l. Hence we draw the unique line between the poles of the two given lines, and intersect it with the boundary circle; the chord of intersection will be the desired common perpendicular of the ultraparallel lines.

  3. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  4. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    The number of vertices is smaller when some lines are parallel, or when some vertices are crossed by more than two lines. [4] An arrangement can be rotated, if necessary, to avoid axis-parallel lines. After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal.

  5. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m , a common perpendicular would have slope −1/ m and we can take the line with equation y = − x / m as a common perpendicular.

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Given a line and a point P not on that line, construct a line, t, perpendicular to the given one through the point P, and then a perpendicular to this perpendicular at the point P. This line is parallel because it cannot meet ℓ {\displaystyle \ell } and form a triangle, which is stated in Book 1 Proposition 27 in Euclid's Elements . [ 15 ]

  7. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The central angle of a square is equal to 90° (360°/4). The external angle of a square is equal to 90°. The diagonals of a square are equal and bisect each other, meeting at 90°. The diagonal of a square bisects its internal angle, forming adjacent angles of 45°. All four sides of a square are equal. Opposite sides of a square are parallel.

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...

  9. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    Simply replacing the parallel postulate with the statement, "In a plane, given a point P and a line l not passing through P, all the lines through P meet l", does not give a consistent set of axioms. This follows since parallel lines exist in absolute geometry, [21] but this statement says that there are no parallel lines. This problem was ...