Search results
Results from the WOW.Com Content Network
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
Let a be an integer that is not a square number and not −1. Write a = a 0 b 2 with a 0 square-free. Denote by S(a) the set of prime numbers p such that a is a primitive root modulo p. Then the conjecture states S(a) has a positive asymptotic density inside the set of primes. In particular, S(a) is infinite.
Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:
Once a primitive kth root of unity x is obtained, every power is a th root of unity, but not necessarily a primitive one. The power x ℓ {\displaystyle x^{\ell }} is a primitive k {\displaystyle k} th root of unity if and only if k {\displaystyle k} and ℓ {\displaystyle \ell } are coprime .
There are four primitive λ-roots modulo 15, namely 2, 7, 8, and 13 as . The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa.
Is 2,500 square feet considered a big house? Yes, 2,500 square feet is bigger than average. According to U.S. Census data, the average newly built single-family home in 2022 measured 2,299 square ...
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .