enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pressure coefficient - Wikipedia

    en.wikipedia.org/wiki/Pressure_coefficient

    The coefficient of lift for a two-dimensional airfoil section with strictly horizontal surfaces can be calculated from the coefficient of pressure distribution by integration, or calculating the area between the lines on the distribution.

  3. XFOIL - Wikipedia

    en.wikipedia.org/wiki/XFOIL

    XFOIL is an interactive program for the design and analysis of subsonic isolated airfoils. Given the coordinates specifying the shape of a 2D airfoil, Reynolds and Mach numbers, XFOIL can calculate the pressure distribution on the airfoil and hence lift and drag characteristics. The program also allows inverse design - it will vary an airfoil ...

  4. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta and Joukowski showed that for computing the pressure and lift of a thin airfoil for flow at large Reynolds number and small angle of attack, the flow can be assumed inviscid in the entire region outside the airfoil provided the Kutta condition is imposed. This is known as the potential flow theory and works remarkably well in practice.

  5. Joukowsky transform - Wikipedia

    en.wikipedia.org/wiki/Joukowsky_transform

    In aerodynamics, the transform is used to solve for the two-dimensional potential flow around a class of airfoils known as Joukowsky airfoils. A Joukowsky airfoil is generated in the complex plane ( -plane) by applying the Joukowsky transform to a circle in the -plane. The coordinates of the centre of the circle are variables, and varying them ...

  6. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The aerodynamic center is the point at which the pitching moment coefficient for the airfoil does not vary with lift coefficient (i.e. angle of attack), making analysis simpler. [1] where is the aircraft lift coefficient. The lift and drag forces can be applied at a single point, the center of pressure. However, the location of the center of ...

  7. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    Airfoil nomenclature The various terms related to airfoils are defined below: [9] The suction surface (a.k.a. upper surface) is generally associated with higher velocity and lower static pressure. The pressure surface (a.k.a. lower surface) has a comparatively higher static pressure than the suction surface. The pressure gradient between these two surfaces contributes to the lift force ...

  8. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    When an airfoil moves relative to the air, it generates an aerodynamic force determined by the velocity of relative motion, and the angle of attack. This aerodynamic force is commonly resolved into two components, both acting through the center of pressure: [3]: 14 [1]: § 5.3

  9. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    The lift coefficient CL is defined by [2][3] , where is the lift force, is the relevant surface area and is the fluid dynamic pressure, in turn linked to the fluid density , and to the flow speed . The choice of the reference surface should be specified since it is arbitrary. For example, for cylindric profiles (the 3D extrusion of an airfoil in the spanwise direction), the first axis ...