Search results
Results from the WOW.Com Content Network
Plasma beta. The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B2 /2 μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs. In the fusion power field, plasma is often confined using strong magnets.
H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Measure of electrostatic effect and how far it persists. In plasmas and electrolytes, the Debye length (Debye radius or Debye–Hückel screening length), is a measure of a charge carrier 's net electrostatic effect in a solution and how far its electrostatic effect persists. [1] With each Debye length the charges are increasingly electrically ...
Hence, T C is the temperature where ferroelectric materials lose their spontaneous polarisation as a first or second order phase change occurs. In case of a second order transition, the Curie Weiss temperature T 0 which defines the maximum of the dielectric constant
Magnetosphere. A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1][2] It is created by a celestial body with an active interior dynamo.
The magnetic field in the Sun 's corona is often approximated as a force-free field. In plasma physics, a force-free magnetic field is a magnetic field in which the Lorentz force is equal to zero and the magnetic pressure greatly exceeds the plasma pressure such that non-magnetic forces can be neglected. For a force-free field, the electric ...
Schematic view of the different current systems which shape the Earth's magnetosphere. In many MHD systems most of the electric current is compressed into thin nearly-two-dimensional ribbons termed current sheets. [10] These can divide the fluid into magnetic domains, inside of which the currents are relatively weak.
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.