Search results
Results from the WOW.Com Content Network
This function would appear to be singular for small , but it is not, since the two singular terms cancel each other. In fact, its behavior for small arguments is L ( x ) ≈ x / 3 {\displaystyle L(x)\approx x/3} , so the Curie limit also applies, but with a Curie constant three times smaller in this case.
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
The Curie–Weiss law is a simple model derived from a mean-field approximation, this means it works well for the materials temperature, T, much greater than their corresponding Curie temperature, T C, i.e. T ≫ T C; it however fails to describe the magnetic susceptibility, χ, in the immediate vicinity of the Curie point because of ...
The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun.It takes the shape of a vast, tailed bubble-like region of space.In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium.
To a first order approximation, the temperature dependence of spontaneous magnetization at low temperatures is given by the Bloch T 3/2 law: [1]: 708 = ((/) /),where M(0) is the spontaneous magnetization at absolute zero.
Magnetic reconnection is a breakdown of "ideal-magnetohydrodynamics" and so of "Alfvén's theorem" (also called the "frozen-in flux theorem") which applies to large-scale regions of a highly-conducting magnetoplasma, for which the Magnetic Reynolds Number is very large: this makes the convective term in the induction equation dominate in such regions.