Search results
Results from the WOW.Com Content Network
Illustration of difference between row- and column-major ordering. In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory. The difference between the orders lies in which elements of an array are contiguous in memory.
Thus an element in row i and column j of an array A would be accessed by double indexing (A[i][j] in typical notation). This way of emulating multi-dimensional arrays allows the creation of jagged arrays, where each row may have a different size – or, in general, where the valid range of each index depends on the values of all preceding indices.
Arrays can have multiple dimensions, thus it is not uncommon to access an array using multiple indices. For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing
Array indices can also be arrays of integers. For example, suppose that I = [0:9] is an array of 10 integers. Then A[I] is equivalent to an array of the first 10 elements of A. A practical example of this is a sorting operation such as:
The Z-ordering can be used to efficiently build a quadtree (2D) or octree (3D) for a set of points. [4] [5] The basic idea is to sort the input set according to Z-order.Once sorted, the points can either be stored in a binary search tree and used directly, which is called a linear quadtree, [6] or they can be used to build a pointer based quadtree.
Sorted arrays are the most space-efficient data structure with the best locality of reference for sequentially stored data. [citation needed]Elements within a sorted array are found using a binary search, in O(log n); thus sorted arrays are suited for cases when one needs to be able to look up elements quickly, e.g. as a set or multiset data structure.
A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.
Sorting small arrays optimally (in fewest comparisons and swaps) or fast (i.e. taking into account machine specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.