Search results
Results from the WOW.Com Content Network
kilogram (kg) energy density: joule per cubic meter (J/m 3) specific energy: joule per kilogram (J/kg) voltage also called electric potential difference volt (V) volume: cubic meter (m 3) shear force: velocity: meter per second (m/s) weight: newton (N) mechanical work: joule (J) width
"The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J s, which is equal to kg m 2 s −1, where the metre and the second are defined in terms of c and ∆ν Cs." [1] The mass of one litre of water at the temperature ...
After the metre was redefined in 1960, the International Prototype of the Kilogram (IPK) was the only physical artefact upon which base units (directly the kilogram and indirectly the ampere, mole and candela) depended for their definition, making these units subject to periodic comparisons of national standard kilograms with the IPK. [38]
In light-water reactors, 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 kg of coal. [16] Comparatively, coal, gas, and petroleum are the current primary energy sources in the U.S. [17] but have a much lower energy ...
In 1879, the CIPM adopted the definition of the litre, with the symbol l (lowercase letter L). In 1901, at the 3rd CGPM conference, the litre was redefined as the space occupied by 1 kg of pure water at the temperature of its maximum density (3.98 °C) under a pressure of 1 atm .
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
The litre and tonne are not part of the SI, but are acceptable for use with it, leading to the following units: kilogram per litre (kg/L) gram per millilitre (g/mL) tonne per cubic metre (t/m 3) Densities using the following metric units all have exactly the same numerical value, one thousandth of the value in (kg/m 3).
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.