enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron capture - Wikipedia

    en.wikipedia.org/wiki/Neutron_capture

    The absorption neutron cross section of an isotope of a chemical element is the effective cross-sectional area that an atom of that isotope presents to absorption and is a measure of the probability of neutron capture. It is usually measured in barns. Absorption cross section is often highly dependent on neutron energy. In general, the ...

  3. Neutron cross section - Wikipedia

    en.wikipedia.org/wiki/Neutron_cross_section

    While the assumptions of this model are naive, it explains at least qualitatively the typical measured energy dependence of the neutron absorption cross section. For neutrons of wavelength much larger than typical radius of atomic nuclei (1–10 fm, E = 10–1000 keV) can be neglected. For these low energy neutrons (such as thermal neutrons ...

  4. Resonance escape probability - Wikipedia

    en.wikipedia.org/wiki/Resonance_escape_probability

    The probability of resonance absorption is called the resonance factor, and the sum of the two factors is + =. [1] Generally, the higher the neutron energy, the lower the probability of absorption, but for some energies, called resonance energies, the resonance factor is very high. These energies depend on the properties of heavy nuclei.

  5. Neutron moderator - Wikipedia

    en.wikipedia.org/wiki/Neutron_moderator

    The unbound neutron has a half-life of 10 minutes and 11 seconds. The release of neutrons from the nucleus requires exceeding the binding energy of the neutron, which is typically 7-9 MeV for most isotopes. Neutron sources generate free neutrons by a variety of nuclear reactions, including nuclear fission and nuclear fusion. Whatever the source ...

  6. Nuclear chain reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chain_reaction

    The prompt neutron lifetime, , is the average time between the emission of a neutron and either its absorption or escape from the system. [17] The neutrons that occur directly from fission are called prompt neutrons, and the ones that are a result of radioactive decay of fission fragments are called delayed neutrons.

  7. Neutron transport - Wikipedia

    en.wikipedia.org/wiki/Neutron_transport

    The number of neutrons produced per fission is multiplicatively modified by the dominant eigenvalue. The resulting value of this eigenvalue reflects the time dependence of the neutron density in a multiplying medium. k eff < 1, subcritical: the neutron density is decreasing as time passes; k eff = 1, critical: the neutron density remains ...

  8. Neutron scattering - Wikipedia

    en.wikipedia.org/wiki/Neutron_scattering

    Unlike an x-ray photon with a similar wavelength, which interacts with the electron cloud surrounding the nucleus, neutrons interact primarily with the nucleus itself, as described by Fermi's pseudopotential. Neutron scattering and absorption cross sections vary widely from isotope to isotope.

  9. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Hydrogen-rich ordinary water effects neutron absorption in nuclear fission reactors: Usually, neutrons are so strongly absorbed by normal water that fuel enrichment with a fissionable isotope is required. (The number of neutrons produced per fission depends primarily on the fission products.