enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  3. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  4. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x. Because the source and target of f are one-dimensional, the derivative of f is a real number. If x and y are vectors, then the best linear approximation to the graph of f depends on how f changes in several

  7. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y). m is chosen such that

  8. Differential-algebraic system of equations - Wikipedia

    en.wikipedia.org/wiki/Differential-algebraic...

    But not every point (x,y,t) is a solution of g. The variables in x and the first half f of the equations get the attribute differential. The components of y and the second half g of the equations are called the algebraic variables or equations of the system. [The term algebraic in the context of DAEs only means free of derivatives and is not ...

  9. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one.