Search results
Results from the WOW.Com Content Network
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]
In the case of a first order ODE that is non-homogeneous we need to first find a solution to the homogeneous portion of the DE, otherwise known as the associated homogeneous equation, and then find a solution to the entire non-homogeneous equation by guessing.
Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...
Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.
In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...
The primary use of Green's functions in mathematics is to solve non-homogeneous boundary value problems. In modern theoretical physics , Green's functions are also usually used as propagators in Feynman diagrams ; the term Green's function is often further used for any correlation function .
Consider the general, homogeneous, second-order linear constant coefficient ordinary differential equation. (ODE) ″ + ′ + =, where ,, are real non-zero coefficients. . Two linearly independent solutions for this ODE can be straightforwardly found using characteristic equations except for the case when the discriminant, , vanish