Search results
Results from the WOW.Com Content Network
For electromagnetic waves in vacuum, the angular frequency is proportional to the wavenumber: =. This is a linear dispersion relation, in which case the waves are said to be non-dispersive. [1] That is, the phase velocity and the group velocity are the same:
In an unmagnetized plasma, waves above the plasma frequency propagate through the plasma according to the dispersion relation: = = + In an unmagnetized plasma for the high frequency or low electron density limit, i.e. for = (/) / or / where ω pe is the plasma frequency, the wave speed is the speed of light in vacuum.
The dispersion relation can be written as an expression for the frequency (squared), but it is also common to write it as an expression for the index of refraction: = (). The full equation is typically given as follows: [4]
The electromagnetic wave equation is a second-order ... the wave vector and the angular frequency are not independent; they must adhere to the dispersion ...
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
Waves in plasmas can be classified as electromagnetic or electrostatic according to whether or not there is an oscillating magnetic field. Applying Faraday's law of induction to plane waves , we find k × E ~ = ω B ~ {\displaystyle \mathbf {k} \times {\tilde {\mathbf {E} }}=\omega {\tilde {\mathbf {B} }}} , implying that an electrostatic wave ...
The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation. For the special case of an electromagnetic wave in a vacuum, in which the wave propagates at the speed of light, k is given by:
The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and ...