enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    If electromagnetic energy is not gained from or lost to other forms of energy within some region (e.g., mechanical energy, or heat), then electromagnetic energy is locally conserved within that region, yielding a continuity equation as a special case of Poynting's theorem: = where is the energy density of the electromagnetic field. This ...

  3. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire (likely copper) wound into a coil. A current through the wire creates a magnetic field which is concentrated along the center of the coil. The magnetic field disappears when the current is turned off.

  6. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Curvature of spacetime affects electrodynamics. An electromagnetic field having energy and momentum also generates curvature in spacetime. Maxwell's equations in curved spacetime can be obtained by replacing the derivatives in the equations in flat spacetime with covariant derivatives. (Whether this is the appropriate generalization requires ...

  7. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.

  8. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    [note 1] The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.

  9. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    There is a widespread interpretation of Maxwell's equations indicating that spatially varying electric and magnetic fields can cause each other to change in time, thus giving rise to a propagating electromagnetic wave [6] (electromagnetism). However, Jefimenko's equations show an alternative point of view. [7]