Search results
Results from the WOW.Com Content Network
Substituting the earlier solution for the constant W we find: = (/) = that is, the power given by integrating the Poynting vector over a cross section of the coaxial cable is exactly equal to the product of voltage and current as one would have computed for the power delivered using basic laws of electricity.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
[note 1] The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
P o is the initial power; There are often other contributions to power loss for electromagnetic waves that are not included in this expression, such as due to the wall currents of the conductors of a transmission line or waveguide. Also, a similar analysis could be applied to the magnetic permeability where
There is a widespread interpretation of Maxwell's equations indicating that spatially varying electric and magnetic fields can cause each other to change in time, thus giving rise to a propagating electromagnetic wave [6] (electromagnetism). However, Jefimenko's equations show an alternative point of view. [7]