enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    The root discriminant of a degree n number field K is defined by the formula ... For totally real fields, the root discriminant is > 14, with 1229 exceptions.

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If >, the cubic has three distinct real roots; If <, the cubic has one real root and two non-real complex conjugate roots. This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots.

  5. Cubic field - Wikipedia

    en.wikipedia.org/wiki/Cubic_field

    Adjoining a root of x 3 + x 2 − 2x − 1 to Q yields a cyclic cubic field, and hence a totally real cubic field. It has the smallest discriminant of all totally real cubic fields, namely 49. [4] The field obtained by adjoining to Q a root of x 3 + x 2 − 3x − 1 is an example of a totally real cubic field that is not cyclic. Its ...

  6. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Moreover, if the polynomial degree is a power of 2 and the roots are all real, then if there is a root that can be expressed in real radicals it can be expressed in terms of square roots and no higher-degree roots, as can the other roots, and so the roots are classically constructible. Casus irreducibilis for quintic polynomials is discussed by ...

  7. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    If the discriminant is positive, then the vertex is not on the ⁠ ⁠-axis but the parabola opens in the direction of the ⁠ ⁠-axis, crossing it twice, so the corresponding equation has two real roots. If the discriminant is negative, then the parabola opens in the opposite direction, never crossing the ⁠ ⁠-axis, and the equation has no ...

  8. Hurwitz polynomial - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_polynomial

    where, if the discriminant b 2 −4ac is less than zero, then the polynomial will have two complex-conjugate solutions with real part −b/2a, which is negative for positive a and b. If the discriminant is equal to zero, there will be two coinciding real solutions at −b/2a.

  9. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    whose solutions are called roots of the function. The derivative of a cubic function is a quadratic function. A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root.