enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A water molecule has two pairs of bonded electrons and two unshared lone pairs. Tetrahedral: Tetra-signifies four, and -hedral relates to a face of a solid, so "tetrahedral" literally means "having four faces". This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs.

  3. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    An atom bonded to 5 other atoms (and no lone pairs) forms a trigonal bipyramid with two axial and three equatorial positions, but in the seesaw geometry one of the atoms is replaced by a lone pair of electrons, which is always in an equatorial position. This is true because the lone pair occupies more space near the central atom (A) than does a ...

  4. Lone pair - Wikipedia

    en.wikipedia.org/wiki/Lone_pair

    Lone pairs (shown as pairs of dots) in the Lewis structure of hydroxide. In science, a lone pair refers to a pair of valence electrons that are not shared with another atom in a covalent bond [1] and is sometimes called an unshared pair or non-bonding pair. Lone pairs are found in the outermost electron shell of atoms.

  5. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    AX 2 E 1 molecules, such as SnCl 2, have only one lone pair and the central angle about 120° (the centre and two vertices of an equilateral triangle). They have three sp 2 orbitals. There exist also sd-hybridised AX 2 compounds of transition metals without lone pairs: they have the central angle about 90° and are also classified as bent.

  6. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In the case of water, with its 104.5° HOH angle, the OH bonding orbitals are constructed from O(~sp 4.0) orbitals (~20% s, ~80% p), while the lone pairs consist of O(~sp 2.3) orbitals (~30% s, ~70% p). As discussed in the justification above, the lone pairs behave as very electropositive substituents and have excess s character.

  7. Octahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Octahedral_molecular_geometry

    6, have a lone pair that distorts the symmetry of the molecule from O h to C 3v. [4] [5] The specific geometry is known as a monocapped octahedron, since it is derived from the octahedron by placing the lone pair over the centre of one triangular face of the octahedron as a "cap" (and shifting the positions of the other six atoms to accommodate ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    The T-shaped geometry is related to the trigonal bipyramidal molecular geometry for AX 5 molecules with three equatorial and two axial ligands. In an AX 3 E 2 molecule, the two lone pairs occupy two equatorial positions, and the three ligand atoms occupy the two axial positions as well as one equatorial position. The three atoms bond at 90 ...