Search results
Results from the WOW.Com Content Network
Multivariable calculus is used in many fields of natural and social science and engineering to model and study high-dimensional systems that exhibit deterministic behavior. In economics , for example, consumer choice over a variety of goods, and producer choice over various inputs to use and outputs to produce, are modeled with multivariate ...
With the definitions of multiple integration and partial derivatives, key theorems can be formulated, including the fundamental theorem of calculus in several real variables (namely Stokes' theorem), integration by parts in several real variables, the symmetry of higher partial derivatives and Taylor's theorem for multivariable functions.
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
In mathematics, geometric calculus extends geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to reproduce other mathematical theories including vector calculus , differential geometry , and differential forms .
In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point. [citation needed]The directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a direction ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. [ 1 ]
Suppose : is a function taking as input a vector and outputting a scalar (). If all second-order partial derivatives of exist, then the Hessian matrix of is a square matrix, usually defined and arranged as = [].