Search results
Results from the WOW.Com Content Network
PHP has hundreds of base functions and thousands more from extensions. Prior to PHP version 5.3.0, functions are not first-class functions and can only be referenced by their name, whereas PHP 5.3.0 introduces closures. [35] User-defined functions can be created at any time and without being prototyped. [35]
PHP defines a large array of functions in the core language and many are also available in various extensions; these functions are well documented online PHP documentation. [224] However, the built-in library has a wide variety of naming conventions and associated inconsistencies, as described under history above.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Thus, if the array is seen as a function on a set of possible index combinations, it is the dimension of the space of which its domain is a discrete subset. Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc.
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
In languages with typed pointers like C, the increment operator steps the pointer to the next item of that type -- increasing the value of the pointer by the size of that type. When a pointer (of the right type) points to any item in an array, incrementing (or decrementing) makes the pointer point to the "next" (or "previous") item of that array.
The syntax generally follows the pattern of one-letter code of the variable type, followed by a colon and the length of the data, followed by the variable value, and ending with a semicolon. For the associative array, the format is <serialised key> ; <serialised value>, repeated for each association/pair in the array.