enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  3. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  4. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).

  5. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]

  6. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    Other loss functions that penalize errors differently can be also used for training, resulting in models with different final test accuracy. [7] For example, suppose we have samples with each sample indexed by =, …,. The average of the loss function is then given by:

  7. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    The loss function is a function that maps values of one or more variables onto a real number intuitively representing some "cost" associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.

  8. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    For regularized least squares the square loss function is introduced: = = (, ()) = = (()) However, if the functions are from a relatively unconstrained space, such as the set of square-integrable functions on X {\displaystyle X} , this approach may overfit the training data, and lead to poor generalization.

  9. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning approaches, including stochastic gradient descent for training deep neural networks, and ensemble methods (such as random forests and gradient boosted trees).