Search results
Results from the WOW.Com Content Network
In machine learning and mathematical optimization, loss functions for classification are computationally feasible loss functions representing the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to). [1]
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
Effect of triplet loss minimization in training: the positive is moved closer to the anchor than the negative. Triplet loss is a loss function for machine learning algorithms where a reference input (called anchor) is compared to a matching input (called positive) and a non-matching input (called negative). The distance from the anchor to the ...
As defined above, the Huber loss function is strongly convex in a uniform neighborhood of its minimum =; at the boundary of this uniform neighborhood, the Huber loss function has a differentiable extension to an affine function at points = and =. These properties allow it to combine much of the sensitivity of the mean-unbiased, minimum-variance ...
Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]
In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1] For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as
The loss function is a function that maps values of one or more variables onto a real number intuitively representing some "cost" associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a training example has propagated through the network.
In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...