enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus , Newton's method (also called Newton–Raphson ) is an iterative method for finding the roots of a differentiable function f {\displaystyle f} , which are solutions to the equation f ( x ) = 0 {\displaystyle f(x)=0} .

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    If instead one performed Newton-Raphson iterations beginning with an estimate of 10, it would take two iterations to get to 3.66, matching the hyperbolic estimate. For a more typical case like 75, the hyperbolic estimate of 8.00 is only 7.6% low, and 5 Newton-Raphson iterations starting at 75 would be required to obtain a more accurate result.

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it ...

  6. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Newton–Raphson uses Newton's method to find the reciprocal of and multiply that reciprocal by to find the final quotient . The steps of Newton–Raphson division are: Calculate an estimate X 0 {\displaystyle X_{0}} for the reciprocal 1 / D {\displaystyle 1/D} of the divisor D {\displaystyle D} .

  7. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    One way of calculating and ⁡ is to use Heron's method, which is a special case of Newton's method, to find a solution for the equation =, giving the iterative formula + = (+),, > The sequence { x k } {\displaystyle \{x_{k}\}} converges quadratically to n {\displaystyle {\sqrt {n}}} as k → ∞ {\displaystyle k\to \infty } .

  8. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The backward Euler method is an implicit method, meaning that we have to solve an equation to find y n+1. One often uses fixed-point iteration or (some modification of) the Newton–Raphson method to achieve this.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Newton–Raphson division: uses Newton's method to find the reciprocal of D, and multiply that reciprocal by N to find the final quotient Q. Goldschmidt division; Exponentiation: Exponentiation by squaring; Addition-chain exponentiation; Multiplicative inverse Algorithms: for computing a number's multiplicative inverse (reciprocal). Newton's method