Search results
Results from the WOW.Com Content Network
The other pathway, non-cyclic photophosphorylation, is a two-stage process involving two different chlorophyll photosystems in the thylakoid membrane. First, a photon is absorbed by chlorophyll pigments surrounding the reaction core center of photosystem II.
In cyclic photophosphorylation, cytochrome b 6 f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions. The net-reaction of all light-dependent reactions in oxygenic photosynthesis ...
The chloroplast ferredoxin is involved in both cyclic and non-cyclic photophosphorylation reactions of photosynthesis. In non-cyclic photophosphorylation, ferredoxin is the last electron acceptor thus reducing the enzyme NADP + reductase.
Cyclic phosphites generally react to eject the non-cyclic OR group, though for some 5-member rings additional heating is required to afford the final cyclic product. [5] Phosphite salts (Ex: R = Na) can also undergo the reaction with precipitation of the corresponding Na-halide salt.
The cyclic reaction is similar to that of the non-cyclic but differs in that it generates only ATP, and no reduced NADP (NADPH) is created. The cyclic reaction takes place only at photosystem I. Once the electron is displaced from the photosystem, the electron is passed down the electron acceptor molecules and returns to photosystem I, from ...
The cytochrome b 6 f complex is a dimer, with each monomer composed of eight subunits. [3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b 6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM ...
Due to the activated nature of the cyclic carbon–carbon triple bond, many alkyne addition-type reactions such as the Diels–Alder, 1,3-dipolar cycloadditions and halogenation may be performed using very mild conditions and in the absence of the catalysts frequently required to accelerate the transformation in a non-cyclic system. In addition ...
These reactions primarily form cyclopentenones, a cycloalkene that contains two functional groups: the cyclopentene and a ketone group. [12] However, other cycloalkenes, such as Cyclooctatetraene, can be formed as a result of this reaction. [11] Formation of a cyclohexane from a non-cyclic compound via a Cyclization Reaction