enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).

  3. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    The MSPE can be decomposed into two terms: the squared bias (mean error) of the fitted values and the variance of the fitted values: = +, = ⁡ [^ () ...

  4. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  5. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    The bias–variance decomposition forms the conceptual basis for regression regularization methods such as LASSO and ridge regression.Regularization methods introduce bias into the regression solution that can reduce variance considerably relative to the ordinary least squares (OLS) solution.

  6. Mean signed deviation - Wikipedia

    en.wikipedia.org/wiki/Mean_signed_deviation

    The mean signed difference is derived from a set of n pairs, (^,), where ^ is an estimate of the parameter in a case where it is known that =. In many applications, all the quantities θ i {\displaystyle \theta _{i}} will share a common value.

  7. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    The standard deviations will then be the square roots of the respective variances. Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction)

  8. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    The first term represents the mean squared error; the second term represents the square of the estimator bias; and the third term represents the variance of the sample. The quality of the estimator can be identified from the comparison between the variance, the square of the estimator bias, or the MSE.

  9. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n, where df is the number of degrees of freedom (n minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the ...