enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr magneton - Wikipedia

    en.wikipedia.org/wiki/Bohr_magneton

    The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...

  3. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1] In units of the Bohr magneton ( μ B ), it is −1.001 159 652 180 59 (13) μ B , [ 2 ] a value that was measured with a relative accuracy of 1.3 × 10 −13 .

  4. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.

  5. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.

  6. Nuclear magneton - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magneton

    In Gaussian CGS units, its value can be given in convenient units as μ N = 0.105 154 46 e ⋅ fm The nuclear magneton is the natural unit for expressing magnetic dipole moments of heavy particles such as nucleons and atomic nuclei .

  7. Magnetochemistry - Wikipedia

    en.wikipedia.org/wiki/Magnetochemistry

    The quantity μ eff is effectively dimensionless, but is often stated as in units of Bohr magneton (μ B). [12] For substances that obey the Curie law, the effective magnetic moment is independent of temperature. For other substances μ eff is temperature dependent, but the dependence is small if the Curie-Weiss law holds and the Curie ...

  8. Best Buy broadly misses earnings estimates as consumers pull ...

    www.aol.com/finance/best-buy-expected-see...

    This year, the company kicked off Black Friday sales a week early as consumers hunt for value. Best Buy stock fell 7% in early trading. As of the market close on Monday, ...

  9. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between Gaussian and SI units is in the factors of 4π in various formulas. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.