Search results
Results from the WOW.Com Content Network
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1] In units of the Bohr magneton ( μ B ), it is −1.001 159 652 180 59 (13) μ B , [ 2 ] a value that was measured with a relative accuracy of 1.3 × 10 −13 .
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.
The magnetic moment of the electron is =, where μ B is the Bohr magneton, S is electron spin, and the g-factor g S is 2 according to Dirac's theory, but due to quantum electrodynamic effects it is slightly larger in reality: 2.002 319 304 36.
In Gaussian CGS units, its value can be given in convenient units as μ N = 0.105 154 46 e ⋅ fm The nuclear magneton is the natural unit for expressing magnetic dipole moments of heavy particles such as nucleons and atomic nuclei .
The quantity μ eff is effectively dimensionless, but is often stated as in units of Bohr magneton (μ B). [12] For substances that obey the Curie law, the effective magnetic moment is independent of temperature. For other substances μ eff is temperature dependent, but the dependence is small if the Curie-Weiss law holds and the Curie ...
This year, the company kicked off Black Friday sales a week early as consumers hunt for value. Best Buy stock fell 7% in early trading. As of the market close on Monday, ...
One difference between Gaussian and SI units is in the factors of 4π in various formulas. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.