Search results
Results from the WOW.Com Content Network
A molecular orbital diagram, or MO diagram, is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the linear combination of atomic orbitals (LCAO) method in particular.
Molecular orbital diagram of two singlet excited states as well as the triplet ground state of molecular dioxygen. From left to right, the diagrams are for: 1 Δ g singlet oxygen (first excited state), 1 Σ + g singlet oxygen (second excited state), and 3 Σ − g triplet oxygen (ground state). The lowest energy 1s molecular orbitals are ...
Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...
His ground-breaking paper showed how to derive the electronic structure of the fluorine and oxygen molecules from quantum principles. This qualitative approach to molecular orbital theory is part of the start of modern quantum chemistry. Linear combinations of atomic orbitals (LCAO) can be used to estimate the molecular orbitals that are formed ...
The application of VBT and MOT to computations that attempt to approximate the Schrödinger equation began near the middle of the 20th century, but MOT quickly became the preferred approach between the two. The relative computational ease of doing calculations with non-overlapping orbitals in MOT is said to have contributed to its popularity. [1]
Under a molecular orbital theory framework, the oxygen-oxygen bond in triplet dioxygen is better described as one full σ bond plus two π half-bonds, each half-bond accounted for by two-center three-electron (2c-3e) bonding, to give a net bond order of two (1+2× 1 / 2 ), while also accounting for the spin state (S = 1).
Antibonding orbitals are often labelled with an asterisk (*) on molecular orbital diagrams. In homonuclear diatomic molecules, σ* (sigma star) antibonding orbitals have no nodal planes passing through the two nuclei, like sigma bonds, and π* (pi star) orbitals have one nodal plane passing through the two nuclei, like pi bonds.
Homonuclear diatomic molecules include hydrogen (H 2), oxygen (O 2), nitrogen (N 2) and all of the halogens. Ozone (O 3) is a common triatomic homonuclear molecule. Homonuclear tetratomic molecules include arsenic (As 4) and phosphorus (P 4). Allotropes are different chemical forms of the same element (not containing any other element). In that ...