Search results
Results from the WOW.Com Content Network
Both of these are modeled quite well as tiny loops of current called magnetic dipoles that produce their own magnetic field and are affected by external magnetic fields. The most elementary force between magnets is the magnetic dipole–dipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can ...
Using the definition of the cross product, the magnetic force can also be written as a scalar equation: [10]: 357 = where F magnetic, v, and B are the scalar magnitude of their respective vectors, and θ is the angle between the velocity of the particle and the magnetic field.
In physics, the magnetomotive force (abbreviated mmf or MMF, symbol ) is a quantity appearing in the equation for the magnetic flux in a magnetic circuit, Hopkinson's law. [1] It is the property of certain substances or phenomena that give rise to magnetic fields : F = Φ R , {\displaystyle {\mathcal {F}}=\Phi {\mathcal {R}},} where Φ is the ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The magnetic moment also expresses the magnetic force effect of a magnet. The magnetic field of a magnetic dipole is proportional to its magnetic dipole moment. The dipole component of an object's magnetic field is symmetric about the direction of its magnetic dipole moment, and decreases as the inverse cube of the distance from the object.
When all electric currents present in a conducting fluid are parallel to the magnetic field, the magnetic pressure gradient and magnetic tension force are balanced, and the Lorentz force vanishes. If non-magnetic forces are also neglected, the field configuration is referred to as force-free. Furthermore, if the current density is zero, the ...
In the electric and magnetic field formulation there are four equations that determine the fields for given charge and current distribution. A separate law of nature, the Lorentz force law, describes how the electric and magnetic fields act on charged particles and currents. By convention, a version of this law in the original equations by ...
The magnetization field or M-field can be defined according to the following equation: = Where d m {\displaystyle \mathrm {d} \mathbf {m} } is the elementary magnetic moment and d V {\displaystyle \mathrm {d} V} is the volume element ; in other words, the M -field is the distribution of magnetic moments in the region or manifold concerned.