enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pickering series - Wikipedia

    en.wikipedia.org/wiki/Pickering_series

    [4] [5] Fowler managed to produce similar lines from a hydrogen–helium mixture in 1912, and supported Pickering's conclusion as to their origin. [6] Niels Bohr , however, included an analysis of the series in his 'trilogy' [ 7 ] [ 8 ] on atomic structure [ 9 ] and concluded that Pickering and Fowler were wrong and that the spectral lines ...

  3. Spectral line - Wikipedia

    en.wikipedia.org/wiki/Spectral_line

    A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material.

  4. Fraunhofer lines - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_lines

    The Fraunhofer lines are typical spectral absorption lines. Absorption lines are narrow regions of decreased intensity in a spectrum, which are the result of photons being absorbed as light passes from the source to the detector. In the Sun, Fraunhofer lines are a result of gas in the Sun's atmosphere and outer photosphere. These regions have ...

  5. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it originates from an atom in elemental form. Each element has a different atomic spectrum. The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy.

  6. Sharp series - Wikipedia

    en.wikipedia.org/wiki/Sharp_series

    Arno Bergmann found a fourth series in infrared in 1907, and this became known as Bergmann Series or fundamental series. [14] In 1896 Edward C. Pickering found a new series of lines in the spectrum of ζ Puppis. This was believed to be the sharp series of hydrogen. In 1915 proof was given that it was actually ionised helium - helium II. [15] [16]

  7. Helium - Wikipedia

    en.wikipedia.org/wiki/Helium

    On October 20 of the same year, English astronomer Norman Lockyer observed a yellow line in the solar spectrum, which he named the D 3 because it was near the known D 1 and D 2 Fraunhofer lines of sodium. [29] [30] He concluded that it was caused by an element in the Sun unknown on Earth.

  8. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    Spectroscopists customarily refer to the spectrum arising from a given ionization state of a given element by the element's symbol followed by a Roman numeral.The numeral I is used for spectral lines associated with the neutral element, II for those from the first ionization state, III for those from the second ionization state, and so on. [1]

  9. List of interstellar and circumstellar molecules - Wikipedia

    en.wikipedia.org/wiki/List_of_interstellar_and...

    The spectrum of a particular molecule is governed by the selection rules of quantum chemistry and by its molecular symmetry. Some molecules have simple spectra which are easy to identify, whilst others (even some small molecules) have extremely complex spectra with flux spread among many different lines, making them far harder to detect. [3]