Search results
Results from the WOW.Com Content Network
The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
This formula can fail when one of these conditions is not true. For example, consider g(x) = x 3. Its inverse is f(y) = y 1/3, which is not differentiable at zero. If we attempt to use the above formula to compute the derivative of f at zero, then we must evaluate 1/g′(f(0)).
It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}
For z = 1/3, the inverse of the function x = 2 C 1/3 (y) is the Cantor function. That is, y = y(x) is the Cantor function. In general, for any z < 1/2, C z (y) looks like the Cantor function turned on its side, with the width of the steps getting wider as z approaches zero.
For instance, if f(x, y) = x 2 + y 2 − 1, then the circle is the set of all pairs (x, y) such that f(x, y) = 0. This set is called the zero set of f, and is not the same as the graph of f, which is a paraboloid. The implicit function theorem converts relations such as f(x, y) = 0 into functions.
If y = f(x 1, ..., x n) and all of the variables x 1, ..., x n depend on another variable t, then by the chain rule for partial derivatives, one has = = + + = + +. Heuristically, the chain rule for several variables can itself be understood by dividing through both sides of this equation by the infinitely small quantity dt.
In this section the subscript notation f y denotes a function contingent on a fixed value of y, and not a partial derivative. Once a value of y is chosen, say a, then f(x,y) determines a function f a which traces a curve x 2 + ax + a 2 on the xz-plane: = + +.