enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Fresnel diffraction of circular aperture, plotted with Lommel functions. This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the propagating field is a spherical wave, originating at the aperture and moving along z. The integral modulates the amplitude and phase of the spherical wave.

  3. Near and far field - Wikipedia

    en.wikipedia.org/wiki/Near_and_far_field

    Differences between Fraunhofer diffraction and Fresnel diffraction. The near field itself is further divided into the reactive near field and the radiative near field. The reactive and radiative near-field designations are also a function of wavelength (or distance). However, these boundary regions are a fraction of one wavelength within the ...

  4. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    The Fraunhofer diffraction pattern is shown in the image together with a plot of the intensity vs. angle θ. [10] The pattern has maximum intensity at θ = 0, and a series of peaks of decreasing intensity. Most of the diffracted light falls between the first minima. The angle, α, subtended by these two minima is given by: [11]

  5. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    The result is the Fraunhofer approximation, which is only valid very far away from the object + + Depending on the size of the diffraction object, the distance to the object and the wavelength of the wave, the Fresnel approximation, the Fraunhofer approximation or neither approximation may be valid. As the distance between the measured point of ...

  6. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    There are various analytical models which allow the diffracted field to be calculated, including the Kirchhoff diffraction equation (derived from the wave equation), [16] the Fraunhofer diffraction approximation of the Kirchhoff equation (applicable to the far field), the Fresnel diffraction approximation (applicable to the near field) and the ...

  7. Fresnel number - Wikipedia

    en.wikipedia.org/wiki/Fresnel_number

    The Fresnel number is a useful concept in physical optics. The Fresnel number establishes a coarse criterion to define the near and far field approximations. Essentially, if Fresnel number is small – less than roughly 1 – the beam is said to be in the far field. If Fresnel number is larger than 1, the beam is said to be near field. However ...

  8. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    Diffraction geometry, showing aperture (or diffracting object) plane and image plane, with coordinate system. If the aperture is in x ′ y ′ plane, with the origin in the aperture and is illuminated by a monochromatic wave, of wavelength λ, wavenumber k with complex amplitude A(x ′,y ′), and the diffracted wave is observed in the unprimed x,y-plane along the positive -axis, where l,m ...

  9. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).