enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimension (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(data_warehouse)

    The dimension is a data set composed of individual, non-overlapping data elements. The primary functions of dimensions are threefold: to provide filtering, grouping and labelling. These functions are often described as "slice and dice". A common data warehouse example involves sales as the measure, with customer and product as dimensions.

  3. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    In computing, the star schema or star model is the simplest style of data mart schema and is the approach most widely used to develop data warehouses and dimensional data marts. [1] The star schema consists of one or more fact tables referencing any number of dimension tables. The star schema is an important special case of the snowflake schema ...

  4. Fact table - Wikipedia

    en.wikipedia.org/wiki/Fact_table

    Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...

  5. Dimensional modeling - Wikipedia

    en.wikipedia.org/wiki/Dimensional_modeling

    Dimensions are the foundation of the fact table, and is where the data for the fact table is collected. Typically dimensions are nouns like date, store, inventory etc. These dimensions are where all the data is stored. For example, the date dimension could contain data such as year, month and weekday. Identify the facts

  6. Early-arriving fact - Wikipedia

    en.wikipedia.org/wiki/Early-arriving_fact

    In the data warehouse practice of extract, transform, load (ETL), an early fact or early-arriving fact, [1] also known as late-arriving dimension or late-arriving data, [2] denotes the detection of a dimensional natural key during fact table source loading, prior to the assignment of a corresponding primary key or surrogate key in the dimension table.

  7. Dimensional fact model - Wikipedia

    en.wikipedia.org/wiki/Dimensional_fact_model

    The dimensional fact model (DFM) [1] is an ad hoc and graphical formalism specifically devised to support the conceptual modeling phase in a data warehouse project. DFM can be used by analysts and non-technical users as well.

  8. Snowflake schema - Wikipedia

    en.wikipedia.org/wiki/Snowflake_schema

    The snowflake schema is represented by centralized fact tables which are connected to multiple dimensions. "Snowflaking" is a method of normalizing the dimension tables in a star schema. When it is completely normalized along all the dimension tables, the resultant structure resembles a snowflake with the fact table in the middle. The principle ...

  9. OLAP cube - Wikipedia

    en.wikipedia.org/wiki/OLAP_cube

    OLAP data is typically stored in a star schema or snowflake schema in a relational data warehouse or in a special-purpose data management system. Measures are derived from the records in the fact table and dimensions are derived from the dimension tables .