Search results
Results from the WOW.Com Content Network
For example, any observer inside the event horizon of a non-rotating black hole would fall into its center within a finite period of time. The classical version of the Big Bang cosmological model of the universe contains a causal singularity at the start of time ( t =0), where all time-like geodesics have no extensions into the past.
The point at which tidal forces destroy an object or kill a person will depend on the black hole's size. For a supermassive black hole, such as those found at a galaxy's center, this point lies within the event horizon, so an astronaut may cross the event horizon without noticing any squashing and pulling, although it remains only a matter of ...
A singularity in solutions of the Einstein field equations is one of three things: Spacelike singularities: The singularity lies in the future or past of all events within a certain region. The Big Bang singularity and the typical singularity inside a non-rotating, uncharged Schwarzschild black hole are spacelike.
The black holes have hundreds of thousands to billions of times the sun's mass. They may have been created by the gravitational collapse of giant gas clouds that formed the galaxies, from the ...
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
A dark, vertical line near the center shows the curve of a dusty disk orbiting the core, suggesting a supermassive black hole inside. / Credit: NASA/STScI, M. A. Malkan, B. Boizelle, A.S. Borlaff ...
The final-state proposal [66] suggests that boundary conditions must be imposed at the black-hole singularity, which, from a causal perspective, is to the future of all events in the black-hole interior. This helps reconcile black-hole evaporation with unitarity but contradicts the intuitive idea of causality and locality of time-evolution.
For black holes, this manifests as Hawking radiation, and the larger question of how the black hole possesses a temperature is part of the topic of black hole thermodynamics. For accelerating particles, this manifests as the Unruh effect , which causes space around the particle to appear to be filled with matter and radiation.