Search results
Results from the WOW.Com Content Network
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)
After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:
If f is a function, then its derivative evaluated at x is written ′ (). It first appeared in print in 1749. [3] Higher derivatives are indicated using additional prime marks, as in ″ for the second derivative and ‴ for the third derivative. The use of repeated prime marks eventually becomes unwieldy.
The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.
This is called the second derivative test. An alternative approach, called the first derivative test, involves considering the sign of the f' on each side of the critical point. Taking derivatives and solving for critical points is therefore often a simple way to find local minima or maxima, which can be useful in optimization.
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Appended to this nonlinear edge is an edge weight that is the second-order partial derivative of the nonlinear node in relation to its predecessors. This nonlinear edge is subsequently pushed down to further predecessors in such a way that when it reaches the independent nodes, its edge weight is the second-order partial derivative of the two ...