Search results
Results from the WOW.Com Content Network
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
The abbreviations gt or gtt come from the Latin noun gutta ("drop"). The volume of a drop is not well defined: it depends on the device and technique used to produce the drop, on the strength of the gravitational field, and on the viscosity, density, and the surface tension of the liquid. [1] Several exact definitions exist:
The drop falls when the weight (mg) is equal to the circumference (2πr) multiplied by the surface tension (σ). The surface tension can be calculated provided the radius of the tube (r) and mass of the fluid droplet (m) are known. Alternatively, since the surface tension is proportional to the weight of the drop, the fluid of interest may be ...
The table usually lists only one name and symbol that is most commonly used. The final column lists some special properties that some of the quantities have, such as their scaling behavior (i.e. whether the quantity is intensive or extensive ), their transformation properties (i.e. whether the quantity is a scalar , vector , matrix or tensor ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...
Here () denotes the surface tension (or (excess) surface free energy) of a liquid drop with radius , whereas denotes its value in the planar limit. In both definitions (1) and (2) the Tolman length is defined as a coefficient in an expansion in 1 / R {\displaystyle 1/R} and therefore does not depend on R {\displaystyle R} .
(σ: surface tension, ΔP max: maximum pressure drop, R cap: radius of capillary) Later, after the maximum pressure, the pressure of the bubble decreases and the radius of the bubble increases until the bubble is detached from the end of a capillary and a new cycle begins. This is not relevant to determine the surface tension. [3]
This is a table of surface tension values [1] for some interfaces at the indicated temperatures. Note that the SI units millinewtons per meter (mN·m −1) are equivalent to the cgs units dynes per centimetre (dyn·cm −1).