Search results
Results from the WOW.Com Content Network
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates. [3]
The most basic non-trivial differential one-form is the "change in angle" form . This is defined as the derivative of the angle "function" θ ( x , y ) {\\displaystyle \\theta (x,y)} (which is only defined up to an additive constant), which can be explicitly defined in terms of the atan2 function.
A closed vector field (thought of as a 1-form) is one whose derivative vanishes, and is called an irrotational vector field. Thinking of a vector field as a 2-form instead, a closed vector field is one whose derivative vanishes, and is called an incompressible flow (sometimes solenoidal vector field). The term incompressible is used because a ...
so the curl of a 1-vector field (fiberwise 4-dimensional) is a 2-vector field, which at each point belongs to 6-dimensional vector space, and so one has = < =,,,,, which yields a sum of six independent terms, and cannot be identified with a 1-vector field. Nor can one meaningfully go from a 1-vector field to a 2-vector field to a 3-vector field ...
Let V be a fixed vector space. A V-valued differential form of degree p is a differential form of degree p with values in the trivial bundle M × V. The space of such forms is denoted Ω p (M, V). When V = R one recovers the definition of an ordinary differential form. If V is finite-dimensional, then one can show that the natural homomorphism
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
A unit vector is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â.
A one-way wave equation is a first-order partial differential equation describing one wave traveling in a direction defined by the vector wave velocity. It contrasts with the second-order two-way wave equation describing a standing wavefield resulting from superposition of two waves in opposite directions (using the squared scalar wave velocity).