enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    In 3 dimensions, a differential 0-form is a real-valued function f(x, y, z); a differential 1-form is the following expression, where the coefficients are functions: + +; a differential 2-form is the formal sum, again with function coefficients: + +; and a differential 3-form is defined by a single term with one function as coefficient: .

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A unit vector is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â.

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  6. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For example, a level surface in three-dimensional space is defined by an equation of the form F(x, y, z) = c. The gradient of F is then normal to the surface. More generally, any embedded hypersurface in a Riemannian manifold can be cut out by an equation of the form F(P) = 0 such that dF is nowhere zero.

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  8. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only: Solving = to obtain = and using this in = gives the explicit equation = (()), while more complicated cases will give an implicit equation of the form (,) =

  9. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The divergence of a vector field extends naturally to any differentiable manifold of dimension n that has a volume form (or density) μ, e.g. a Riemannian or Lorentzian manifold. Generalising the construction of a two-form for a vector field on R 3, on such a manifold a vector field X defines an (n − 1)-form j = i X μ obtained by contracting ...