Search results
Results from the WOW.Com Content Network
The total (mechanical) force that is calculated to induce the proper acceleration on a mass at rest in a coordinate system that has a proper acceleration, via Newton's law F = ma, is called the proper force. As seen above, the proper force is equal to the opposing reaction force that is measured as an object's "operational weight" (i.e. its ...
Even if we pick units where =, the magnitude of the proper acceleration will depend on our choice of units: for example, if we use units of light-years for distance, (or ) and years for time, (or ), this would mean = light year/year 2, equal to about 9.5 meters/second 2, while if we use units of light-seconds for distance, (or ), and seconds ...
The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength g (also called acceleration due to gravity). By Newton's Second Law the force F g {\displaystyle \mathbf {F_{g}} } acting on a body is given by: F g = m g . {\displaystyle \mathbf {F_{g}} =m\mathbf {g} .}
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
The proper distance to the horizon is finite, [20] so the length of rope needed would be finite as well, but if the rope were lowered slowly (so that each point on the rope was approximately at rest in Schwarzschild coordinates), the proper acceleration experienced by points on the rope closer and closer to the horizon would approach infinity ...
Below are few ultrarelativistic approximations when .The rapidity is denoted : Motion with constant proper acceleration: d ≈ e aτ /(2a), where d is the distance traveled, a = dφ/dτ is proper acceleration (with aτ ≫ 1), τ is proper time, and travel starts at rest and without changing direction of acceleration (see proper acceleration for more details).
So, calculations made in both frames show that the thread will break; in S′ due to the non-simultaneous acceleration and the increasing distance between the spaceships, and in S due to length contraction of the thread. In the following, the rest length [3] or proper length [4] of an object
For free bodies, the specific force is the cause of, and a measure of, the body's proper acceleration. The acceleration of an object free falling towards the earth depends on the reference frame (it disappears in the free-fall frame, also called the inertial frame), but any g-force "acceleration" will be present in all frames.