Search results
Results from the WOW.Com Content Network
This gives the map two standard parallels. In this way, deviation from unit scale can be minimized within a region of interest that lies largely between the two standard parallels. Unlike other conic projections, no true secant form of the projection exists because using a secant cone does not yield the same scale along both standard parallels. [2]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Patches of conical surfaces that avoid the apex are special cases of developable surfaces, surfaces that can be unfolded to a flat plane without stretching. When the directrix has the property that the angle it subtends from the apex is exactly 2 π {\displaystyle 2\pi } , then each nappe of the conical surface, including the apex, is a ...
In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
Möbius geometry is the study of "Euclidean space with a point added at infinity", or a "Minkowski (or pseudo-Euclidean) space with a null cone added at infinity".That is, the setting is a compactification of a familiar space; the geometry is concerned with the implications of preserving angles.
Effective charge mass for thin charges - a 60° cone. The basic Gurney equations for flat sheets assume that the sheet of material is a large diameter. Small explosive charges, where the explosive's diameter is not significantly larger than its thickness, have reduced effectiveness as gas and energy are lost to the sides. [1]