Search results
Results from the WOW.Com Content Network
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch–execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.
The instruction cycle (also known as the fetch–decode–execute cycle, or simply the fetch-execute cycle) is the cycle that the central processing unit (CPU) follows from boot-up until the computer has shut down in order to process instructions. It is composed of three main stages: the fetch stage, the decode stage, and the execute stage.
The cycle then repeats using the now current PC value. Because of its Harvard memory architecture model, the Hack computer is designed to execute the current instruction and “fetch” the next instruction in a single, two-part clock cycle.
The instruction unit (I-unit or IU), also called, e.g., instruction fetch unit (IFU), instruction issue unit (IIU), instruction sequencing unit (ISU), in a central processing unit (CPU) is responsible for organizing program instructions to be fetched from memory, and executed, in an appropriate order, and for forwarding them to an execution unit (E-unit or EU).
In computer architecture, cycles per instruction (aka clock cycles per instruction, clocks per instruction, or CPI) is one aspect of a processor's performance: the average number of clock cycles per instruction for a program or program fragment. [1] It is the multiplicative inverse of instructions per cycle.
In computer engineering, instruction pipelining is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous "pipeline") performed by different processor units with different parts of instructions ...
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. [1] A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA.
If this instruction offset within the program matches a set of previously given "pause" points, set "Pause" reason, go to 7. "Fetch" the instruction from its original location (if necessary) into the monitor's memory. If "trace" is available and "on", store program name, instruction offset and any other values.