Search results
Results from the WOW.Com Content Network
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
Some examples of typical computer vision tasks are presented below. Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions.
One-shot learning is an object categorization problem, found mostly in computer vision.Whereas most machine learning-based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples.
A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text into tokens ), serializes each patch into a vector, and maps it to a smaller dimension with a single matrix multiplication .
When a computer vision system or computer vision algorithm is designed the choice of feature representation can be a critical issue. In some cases, a higher level of detail in the description of a feature may be necessary for solving the problem, but this comes at the cost of having to deal with more data and more demanding processing.
Includes Matlab Functions for calculating a homography and the fundamental matrix (computer vision). GIMP Tutorial – using the Perspective Tool by Billy Kerr on YouTube. Shows how to do a perspective transform using GIMP. Allan Jepson (2010) Planar Homographies from Department of Computer Science, University of Toronto. Includes 2D homography ...
In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.