Search results
Results from the WOW.Com Content Network
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0.
The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field.His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.
The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.
This elegant expression ties together arguably the five most important mathematical constants (e, i, π, 1, and 0) with the two most common mathematical symbols (+, =). Euler's identity is a special case of Euler's formula , which the physicist Richard Feynman called "our jewel" and "the most remarkable formula in mathematics". [ 7 ]
Euler's number, e = 2.71828 . . . , the base of the natural logarithm; Euler's idoneal numbers, a set of 65 or possibly 66 or 67 integers with special properties; Euler numbers, integers occurring in the coefficients of the Taylor series of 1/cosh t; Eulerian numbers count certain types of permutations.
Euler's identity therefore states that the limit, as n approaches infinity, of (+ /) is equal to −1. This limit is illustrated in the animation to the right. Euler's formula for a general angle. Euler's identity is a special case of Euler's formula, which states that for any real number x,
Real numbers lie on the horizontal axis, and imaginary numbers lie on the vertical axis. The imaginary unit or unit imaginary number, denoted as i, is a mathematical concept which extends the real number system to the complex number system . The imaginary unit's core property is that i 2 = −1.