enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_vaporization

    Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.

  3. Trouton's rule - Wikipedia

    en.wikipedia.org/wiki/Trouton's_rule

    In thermodynamics, Trouton's rule states that the (molar) entropy of vaporization is almost the same value, about 85–88 J/(K·mol), for various kinds of liquids at their boiling points. [1] The entropy of vaporization is defined as the ratio between the enthalpy of vaporization and the boiling temperature.

  4. Vapor pressure - Wikipedia

    en.wikipedia.org/wiki/Vapor_pressure

    The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:

  5. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

  6. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    If the vapor then condenses to a liquid on a surface, then the vapor's latent energy absorbed during evaporation is released as the liquid's sensible heat onto the surface. The large value of the enthalpy of condensation of water vapor is the reason that steam is a far more effective heating medium than boiling water, and is more hazardous.

  7. Ebullioscopic constant - Wikipedia

    en.wikipedia.org/wiki/Ebullioscopic_constant

    A formula to compute the ebullioscopic constant is: [2] = R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent.

  8. Boiling point - Wikipedia

    en.wikipedia.org/wiki/Boiling_point

    Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.

  9. Entropy of vaporization - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_vaporization

    Since this is a thermodynamic equation, the symbol ⁠ ⁠ refers to the absolute thermodynamic temperature, measured in kelvins (K). The entropy of vaporization is then equal to the heat of vaporization divided by the boiling point: [2] [3]