Search results
Results from the WOW.Com Content Network
Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The "biased mean" vertical line is found using the expression above for μ z, and it agrees well with the observed mean (i.e., calculated from the data; dashed vertical line), and the biased mean is above the "expected" value of 100. The dashed curve shown in this figure is a Normal PDF that will be addressed later.
Probability bounds analysis (PBA) is a collection of methods of uncertainty propagation for making qualitative and quantitative calculations in the face of uncertainties of various kinds. It is used to project partial information about random variables and other quantities through mathematical expressions.
Sensitivity analysis is the study of how the uncertainty in the output of a mathematical model or system (numerical or otherwise) can be divided and allocated to different sources of uncertainty in its inputs.
The discipline of probability management communicates and calculates uncertainties as data structures that obey both the laws of arithmetic and probability, while preserving statistical coherence. The simplest approach is to use vector arrays of simulated or historical realizations and metadata called Stochastic Information Packets (SIPs).
A project value is computed for each scenario, and the expected commercial value is obtained by multiplying each situation's value by the scenario odds and adding the results. Depending on the procedures used to estimate the value of the project under each scenario, ECV can be a useful way to address project uncertainties.