enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three. This is established by the existence of a bijection (i.e., a one-to-one correspondence) between the two sets, such as the correspondence {1→4, 25, 3→6}.

  3. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...

  4. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .

  5. Scott's trick - Wikipedia

    en.wikipedia.org/wiki/Scott's_trick

    The use of Scott's trick for cardinal numbers shows how the method is typically employed. The initial definition of a cardinal number is an equivalence class of sets, where two sets are equivalent if there is a bijection between them.

  6. List of large cardinal properties - Wikipedia

    en.wikipedia.org/wiki/List_of_large_cardinal...

    It is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the existence of cardinals of most of the types listed above that type, and for most listed cardinal descriptions φ of lesser consistency strength, V κ ...

  7. Finite set - Wikipedia

    en.wikipedia.org/wiki/Finite_set

    is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:

  8. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    the set of all algebraic numbers, the set of all computable numbers, the set of all computable functions, the set of all binary strings of finite length, and; the set of all finite subsets of any given countably infinite set. These infinite ordinals: ω, ω + 1, ω⋅2, ω 2 are among the countably infinite sets. [6] For example, the sequence ...