enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  4. Drift plus penalty - Wikipedia

    en.wikipedia.org/wiki/Drift_plus_penalty

    This constraint is written in standard form by defining a new penalty function y(t) = a(t) − b(t). The above problem seeks to minimize the time average of an abstract penalty function p'(t)'. This can be used to maximize the time average of some desirable reward function r(t) by defining p(t) = −r('t).

  5. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    minimize f(x) subject to x ≤ b. where b is some constant. If one wishes to remove the inequality constraint, the problem can be reformulated as minimize f(x) + c(x), where c(x) = ∞ if x > b, and zero otherwise. This problem is equivalent to the first.

  6. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  8. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Minimize subject to the algebraic constraints = () Depending upon the type of direct method employed, the size of the nonlinear optimization problem can be quite small (e.g., as in a direct shooting or quasilinearization method), moderate (e.g. pseudospectral optimal control [ 11 ] ) or may be quite large (e.g., a direct collocation method [ 12

  9. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...