enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    In a chemical reaction, the half-life of a species is the time it takes for the concentration of that substance to fall to half of its initial value. In a first-order reaction the half-life of the reactant is ln(2)/λ, where λ (also denoted as k) is the reaction rate constant.

  3. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    Here ⁠ ⁠ stands for concentration in molarity (mol · L −1), ⁠ ⁠ for time, and ⁠ ⁠ for the reaction rate constant. The half-life of a first-order reaction is often expressed as t 1/2 = 0.693/k (as ln(2)≈0.693).

  4. Plateau principle - Wikipedia

    en.wikipedia.org/wiki/Plateau_Principle

    Most drugs are eliminated from the blood plasma with first-order kinetics. For this reason, when a drug is introduced into the body at a constant rate by intravenous therapy, it approaches a new steady concentration in the blood at a rate defined by its half-life. Similarly, when the intravenous infusion is ended, the drug concentration ...

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    The biological half-lives "alpha half-life" and "beta half-life" of a substance measure how quickly a substance is distributed and eliminated. Physical optics: The intensity of electromagnetic radiation such as light or X-rays or gamma rays in an absorbent medium, follows an exponential decrease with distance into the absorbing medium.

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    Using the Eyring equation, there is a straightforward relationship between ΔG ‡, first-order rate constants, and reaction half-life at a given temperature. At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s ...

  7. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  8. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    However, in some cases the enthalpy and entropy do change dramatically with temperature. A first-order approximation is to assume that the two different reaction products have different heat capacities. Incorporating this assumption yields an additional term ⁠ c / T 2 ⁠ in the expression for the equilibrium constant as a function of ...

  9. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    However, the half-life of this nuclear isomer is so long that it has never been observed to decay, and it thus is an "observationally stable" primordial nuclide, a rare isotope of tantalum. This is the only nuclear isomer with a half-life so long that it has never been observed to decay. It is thus included in this list.