enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  3. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  4. Vorticity - Wikipedia

    en.wikipedia.org/wiki/Vorticity

    Rigid-body-like vortex v ∝ r: Parallel flow with shear Irrotational vortex v ∝ ⁠ 1 / r ⁠ where v is the velocity of the flow, r is the distance to the center of the vortex and ∝ indicates proportionality. Absolute velocities around the highlighted point: Relative velocities (magnified) around the highlighted point Vorticity ≠ 0 ...

  5. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The axis of rotation need not go through the body. In general, any rotation can be specified completely by the three angular displacements with respect to the rectangular-coordinate axes x, y, and z. Any change in the position of the rigid body is thus completely described by three translational and three rotational coordinates.

  6. Vortex - Wikipedia

    en.wikipedia.org/wiki/Vortex

    The Rankine vortex is a model that assumes a rigid-body rotational flow where r is less than a fixed distance r 0, and irrotational flow outside that core regions. In a viscous fluid, irrotational flow contains viscous dissipation everywhere, yet there are no net viscous forces, only viscous stresses. [7]

  7. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]

  9. Von Kármán swirling flow - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_swirling_flow

    Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. [1] The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors.