Search results
Results from the WOW.Com Content Network
Mitochondrial DNA is a main source of this extrachromosomal DNA in eukaryotes. [5] The fact that this organelle contains its own DNA supports the hypothesis that mitochondria originated as bacterial cells engulfed by ancestral eukaryotic cells. [6] Extrachromosomal DNA is often used in research into replication because it is easy to identify ...
Circular extrachromosomal DNA are not only found in yeast but other eukaryotic organisms. [15] [16] A regulated formation of eccDNA in preblastua Xenopus embryos has been developed. The population of circular rDNA is decreased in embryos, indicative of the circular rDNA migrating to linear DNA, as was shown in their analysis on 2D gel ...
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
The function of DNA strands (yellow) alters depending on how it is organized around histones (blue) that can be methylated (green).. In biology, the epigenome of an organism is the collection of chemical changes to its DNA and histone proteins that affects when, where, and how the DNA is expressed; these changes can be passed down to an organism's offspring via transgenerational epigenetic ...
Double minutes (DMs) are small fragments of extrachromosomal DNA, which have been observed in a large number of human tumors including breast, lung, ovary, colon, and most notably, neuroblastoma. They are a manifestation of gene amplification as a result of chromothripsis , [ 1 ] during the development of tumors, which give the cells selective ...
CpG-islands characteristic in microDNA compared to a single C-G bp. [1] MicroDNA is the most abundant subtype of Extrachromosomal Circular DNA (eccDNA) in humans, typically ranging from 200-400 base pairs in length and enriched in non-repetitive genomic sequences with a high density of exons.
Changes in DNA caused by mutation in a coding region of DNA can cause errors in protein sequence that may result in partially or completely non-functional proteins. Each cell, in order to function correctly, depends on thousands of proteins to function in the right places at the right times.
The crystal structure of the Ter DNA-Tus protein complex (A) showing the nonblocking and the fork-blocking faces of Tus. (B) A cross-sectional view of the helicase-arresting surface. Replication of the DNA separating the opposing replication forks leaves the completed chromosomes joined as ‘catenanes’ or topologically interlinked circles ...